An initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problem
نویسندگان
چکیده
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Newton's Method for the Matrix Square Root*
One approach to computing a square root of a matrix A is to apply Newton's method to the quadratic matrix equation F( X) = X2 A =0. Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simpl...
متن کاملdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولOn the Matrix Square Root via Geometric Optimization
This paper is triggered by the preprint [P. Jain, C. Jin, S.M. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. Preprint, arXiv:1507.05854, 2015.], which analyzes gradient-descent for computing the square root of a positive definite matrix. Contrary to claims of Jain et al., the author’s experiments reveal that Newton-like methods compute matrix square roots r...
متن کاملAn optimization problem on the sphere
We prove existence and uniqueness of the minimizer for the average geodesic distance to the points of a geodesically convex set on the sphere. This implies a corresponding existence and uniqueness result for an optimal algorithm for halfspace learning, when data and target functions are drawn from the uniform distribution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JSIAM Letters
سال: 2016
ISSN: 1883-0609,1883-0617
DOI: 10.14495/jsiaml.8.17